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ABSRACT

In a study designed to detect prompt reactions to ionizing radia-

tion, rats were exposed to 250 kvp X rays and measurements of be-

havioral departures from sleep and of heart rate were used to indicate

activation of the central nervous system. Exposure at a low dose rate

(0.25 r/sec) produced a transitory arousal from sleep within the first

12 seconds (accrued dose of 3 r). At a higher dose rate (1.9 r/sec)

this initial reaction increased in scope and, by 30 seconds, included

also an acceleration in heart rate. Only animals exposed at the

higher dose rate exhibited evidence of excitation during the residual

period of exposure to a 1,000 r total dose. Accordingly, the inten-

sity of the reaction during exposure depended upon the dose rate

rather than the total dose. A transient excitatory effect at the

termination of exposure was indicated by the occurrence of behavioral

wakefulness for a period of minutes following exposure at both dose

rates. The excitatory effects of irradiation were not dependent upon

adrenal function since adrenalectumized animals showed a sequence of

reactions comparable to that shown by normal animals but with longer

latencies. Stimulation through radiosensitive mechanisms apart from

the visual receptor system was indicated since ophthalmectcumized ani-

mals exhibited both behavioral and heart rate responses within seconds

after the start of exposure. Some possible modes for the action of

ionizing radiation as a stimulus to the nervous system are discussed.
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NON-TECHNICAL SUMMARY

The Problem

This investigation was designed to provide information on prampt

reactions of the intact mamalian nervous system to low intensity ex-

posure to ionizing radiation.

The Findings

X-ray exposure acts as a stimulus to the nervous system in the

rat as evidenced by its pover to produce behavioral arousal in the

sleeping animal within 12 seconds at an exposure rate of as little as

0.25 r/sec. With exposure at a dose rate of 1.9 r/sec this initial

reaction is subsequently increased in scope and includes sub-cortical

neural activation as indicated by the presence of a change in heart

rate by 30 seconds. Only animals exposed at the higher dose rate ex-

hibited evidence of excitation during the residual period of exposure

to a total dose of 1,000 r. Accordingly, the intensity of reaction

during exposure depended upon the dose rate rather than the total

dose. A transitory excitatory effect at the termination of exposure

was also found. Stimulation with X rays did not depend upon adrenal

function since adrenalectamized animals showed a similar sequence of

reactions. Stim•alation through radiosensitive mechanisms apart from

the visual receptor system was indicated since blinded animals ex-

hibited both behavioral and heart rate responses within seconds after

the start of exposure. The probable basis for the immediate effect is

that the nervous system is directly sensitive to ionizing radiation.
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INTRODUCTION

A wide variety of techniques have been applied to the investiga-

tion of the effects of ionizing radiation on the nervous system, par-

ticularly within the last few years (1, 2). Only a few reactions have

been found to indicate that the nervous system of the unanesthetized

ammal reacts promptly to low dose levels of exposure.

Evidence of early reactions have been obtained from electrographic

recordings of brain activity in rats (3, 4), cats (5, 6) and rabbits

(7, 8). With radiation doses ranging from 200 to 1,000 r, both cor-

tical and subcorticalsystems may undergo alterations in spontaneous

and evoked activity during the period of exposure (8) or immediately

thereafter (5, 6). Phasic alterations in excitability of the mammal-

ian nervous system following extremely low doses of radiation have

also been reported in various reviews of the Soviet literature (9-14)o

Although these alterations in central nervous system function may

reflect CNS reactions to abscopal effects of irradiation, more direct
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stimulation of the nervous system by ionizing radiation also is poss-

ible. Visual stimulation by ionizing radiation under conditions of

dark adaptation has long been known to occur (15,16) and very likely

is mediated through effects on the photochemical processes of the re-

ceptor at energy levels nearly comparable to those required for stmizu-

lation with visible light (17-19). Visual sensation in the human has

been demonstrated with "flash" exposures of less than a milliroentgen

(20), and retinal stimulation in infra mammalian species has been de-

monstrated (17) repeatedly (21-23) with electrophysiological measure-

ments.

Behavioral methods have been found to be particularly sensitive

for the demonstration of imnediate CNS reactions to ionizing radia-

tion. In a number of investigations, recently reviewed (24,25), radia-

tion exposure has been employed as the motivating stimulus in condi-

tioning several species to avoid a gustatory stimulus or to avoid

spatial stimuli. In these studies the rat was found to be extremely

sensitive to low dose, short duration, whole-body exposure (26); the

motivational effect was shown to be independent of direct retinal sti-

mulation (27), and the abdominal region was found to be preferentially

sensitive (28). It was concluded that the motivational effects of

irradiation were probably produced through humoral mediation and re-

sult from radiation effects produced in non-nervous tissues (24). A

direct action of radiation on the nervous system, however, could not
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be ruled out. In sam invertebrates., behavioral reactions to low in-

tensity radiation have been shown to occur with latencies of only a

few seconds following the start of exposure (29-32); this is suffi-

ciently rapid to allow the inference of direct stimulation by ionizing

radiation. Hug (29,30) has shown in several invertebrate preparations

that the response latency is inversely proportional to the intensity

of exposure with dose rates above 0.4r/sec. Although these rates of

exposure are higher than those required to produce conditioning in the

manMal, the presence of a "chronaxie* and of a "rheobase" is consistent

with a stimulus-like action for ionizing radiation.

There is a lack of evidence in mamuals for reactions with suffi-

ciently short latencies to indicate direct stimAlus-like action for

ionizing radiation. The present investigation was undertaken to test

for the presence of iminediate (direct) and delayed stimulus actions of

X rays delivered at moderate dose rates. For this purpose, rats in

the main series of experiments (Series I) were conditioned to sleep in

the exposure situation and measurements were made both of behavioral

departures from sleep and of heart rate before, during and following

exposure to a 1,000 r dose of hard X rays delivered at either 0.25 or

1.9 r/sec. The occurrence of a response in either variable Iinediately

(within seconds) after the onset of exposure would be indicative of

direct stimulation of the nervous system by radiation. Indirect modes

of neural stimulation, which might arise from reactions or damame in
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abscopal systems, would be reflected in responses made during the

residual period of exposure.

Additional experimental series were undertaken as a means of de-

termining the relative importance of certain parameters of the main

series. To eliminate possible direct retinal stimulation by radiation

the animals in Series II were blinded by complete bilateral ophthal-

mectomy performed a month before the exposure test. The animals in

Series III were adrenalectanized a week before the exposure test to

eliminate involvement of adrenal function in the elaboration of irrad-

iation effects found to occur both during (33,34) and immediately

following (35-37) exposure. In both series the animals were trained

to sleep in the exposure situation to maintain maximum comparability

to Series I with regard to the initial state of excitability. Since

sensitivity to stimulation would depend upon concurrent nervous acti-

vity, this was altered in two additional series of experiments. Nor-

mal animals that were not adapted to sleep in the exposure situation

were employed in Series IV. These animals were awake at the start of

exposure. In Series V experiments the animals were maintained under

continuous restraint imposed in a manner designed to prcuote strugg-

ling behavior and to maintain, thereby, a continuously excited state.

In both of these series, since the animals remained awake throughout

the test period, the behavioral measurement of departures from sleep

was inapplicable and only the heart rate measurement was employed.
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MUTDS AND PROCEDUFM

Young adult male Sprague-Dawley rats bred at this Laboratory were

used throughout this investigation. Table I shows the animal dis-

tribution for each series by treatment group.

The rats were confined to glass chambers for the observations

of behavior, for remote recording of heart rate, and for exposure of

animals in Series I, II, III and IV. The chamber and the procedures

for adaptai.Lon used to condition sleep for Series I, II and III, and

the general methods employed for recording heart rate in all series

have been described ireviously (38). The restraint employed during

the exposure test in Series V was imposed by fastening each rat prone

and spread-eagled to a 10 x 12 inch Lucite plate. Each forelimb was

encased in a glass tube to prevent biting at the binding that was

used to attach each paw to a corner of the plate. To prumute strugg-

ling a rubber binding was used which allowed the animal L.o work

against an elastic restraint.

A Naxitron (General Electric) X-ray unit, equipped with a lead

shutter and operated at 250 kvp and 25 ma. (HVL of 2.3 OM Cu), was

used for all irradiations. Before the start of each experiment the

dose rate (in air) was measured at the center position within the

test chamber (or above the restraining board) by means of thimble

dosimetry (Victoreen). For exposure at the high dose rate, nominally

1.9 r/sec, the 1,000 r dose was delivered at a distance of 37 cm in
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9 minutes, and in experiments involving exposure at the low dose rate,

nominally 0.25 r/sec, the same total dose was delivered at a distance

of 104 cm in 67 minutes. Each animal's actual position in the

chamber could conceivably range up to + .45 cm from the centerline

position and, correspondingly, the dose rates could range from 1.5

to 2.5 r/sec and frco 0.22 to 0.28 r/sec for the high and low rates,

respectively. Control animals were located about 100 cm from the tube

port behind a 1/4-inch lead plate shield but were otherwise treated

like the exposed animals.

Since the effects of stimuli which were coincidental to exposure

procedures might be confounded with radiation effects, special pre-

cautions were instituted which would limit or control extraneous

sources of stimulation. By means of circuit controls, background

sounds emanating from the ventilation and water circulating systems

were presented without interruption during the entire test session.

Also, a heavy sound shield was placed around the shutter device so

that it was not possible to detect the sound of the shutter mechanism.

Termination of exposure was accomplished silently by shutting off

power to the X-ray tube while the shutter remained open and room and

machine noises continued.

During the conditioning phase, the animals were adapted to sleep

in test chambers which were placed in a large sound-deadened cabinet.

A total of 40, 65-75, and 48 hours of adaptation were imposed in Series
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I, II and III, respectively, distributed over a week or more before the

exposure test. The last adaptation session, and 8-hour period during

the day before exposure, was also used to habituate the anials to

sowuds associated with the exposure test. For this purpose, a magnetic

tape recording of X-ray roum and machine noise was played repeatedly

through a 5-inch speaker located directly in front of the cabinet.

This recording was made through a standard crystal microphone located

about 18 inches from the tube port and consisted of contimnous sounds

frao the room ventilation system and the X-ray machine water circula-

tion system. As an additional precaution, the sound from the solenoid-

actuated shutter mechanism was also incorporated in the recording at

aperiodic intervals. During the last adaptation session, the average

heart rate value of each animal during sleep was obtained and the

rank ordered values within each experiment were used, in conjunction

with tables of randan presutations, to assign animals to either the

exposure or control (lead shielded) group for the next day's test.

Since no adaptation sessions preceded the exposure test in Series IV

and V, body weight measurements were employed for randcm assigrnt

to treatment groups.

A standard schedule of procedures and measurements was followed

for all experimental runs. From 4 to 8 animals were studied in each

run. After their placement in the X-ray room, periodic measurements

of heart rate and behavior were made prior to the start of irradiation
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over a period of at least two hours in Series I, II and nI and of at

least 90 minutes in Series IV and V. Rapid sequence recordin, which

yielded 2 or 3 measurements per minute on each variable for each ani-

mal, was started 5 minutes before the shutter was opened and was

continued for 10 minutes after the start of exposure. Intermittent

measurements were made thereafter at 5-minute intervals to the end of

the first half-hour and then at 10-minute intervals to the end of the

2-hour test period.

Behavioral departures from sleep were measured by means of a rat-

ing scale. During the X-ray exposure test, the observer viewed each

ani-a through a leaded-glass window to the X-ray room from a distance

which ranged fran 2 to 5 meters. Mirrors were arranged to provide

more than a single angle of view of each animal. For purposes of

analysis, a four-category scale used for rating behavior was reduced

to two categories, "inactive* (asleep, at rest) and "active" (alert,

active), ihich served as empirical counterparts to the state of the

animal when asleep and awake. Comparisons of ratings made simultan.

eously by pairs of observers during the course of several experiments

in Series I showed that the ratings made among the three trained

observers were highly reliable. Fron among 42 series, each consisting

of 10-22 Joint canparisons, 30 series yielded percentage agreements

above 90% and 38 series yielded percentage agreements above 80%.

Heart rates were computed from a tally of cardiac cycles recorded
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during a sampling interval of 9 or 10 seconds with an nccuracy of +

1.5 beats/minute. Behavioral measurements were closely coordinated

in time with measurements of heart rate. As a Drecaution against the

possible development of a systematic observer bias over the series of

experiments, tabulation and analysis of all data was delayed until the

last series was cmpleted.

For purposes of analysis, since no differences among runs within

series were apparent upon inspection, the data were cumbined over all

experiments within #ach series. Statistical analysis for treatment

effects was Derformed on measurements made at each time point In the

exposure test sequence. The principal method for analysis of the be-

havioral data was made by the determination frao Crow's tables (39)

of the upper limit of the 95% confidence interval for the proportion

of control animals rated as "active." Supplementary 72 tests (40,,1)

were also employed. Analysis of variance techniques were applied to

the heart rate date in designs which employed the last pre-irradiation

heart rate as the concauitant variable (42). This involved either the

analysis of variance of algebriac changes in heart rate frca pre-

irradiation values or, more frequently, the analysis of covariance

among regression-adjusted treatment means (43-45).

A preliminary report of some results obtained during the first

minute of exposure in Series I and II has been made (46). mhih report

extends these findings to effects observed during and immediately

following exposure.
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The Pre-exposure State.

The establishment of a stable and reasonably homogeneous physiolo-

gic and psychologic state before the start of exposure was essential

to the experimental design in order that radiation-imposed altera-

tions would furnish clear implications. A summary of the data from

measurements made during the last five minutes before the start of

exposure is shown in Table II. For heart rate (all series) and be-

havior (Series I-III) comparisons were made between measurements frum

the first four-minute interval and those from the last 0.6-minute

interval. For this analysis, data from each animal were combined

over adjacent sampling intervals and the mean heart rate and the

presence of any "active" behavior rating obtained within the cumbined

interval were used. For heart rate measurements the correlation be-

twen intervals, rw, was found to be high, above + 0.79 for all

series. This stability was not found to be dependent upon sub-group-

ing by dose rate in that the F test of correlations among dose-rate

groups yielded p > 0.25 in each series. A similar stability between

intervals in proportions of animals rated "active', P(A), was found

in Series II and III. The animals in Series I showed a slight last-

minute trend toward the inactive state, which was statistically de-

tectable according to McNemar's test of correlated change in pro-

portions •2 - 7.20; p < 0.01 for DF - 1). This shift towards the
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conditioned state of sleep was equally evident among the dose-rate

subgroups (92 - 0.48; p > 0.70 for DF - 2).

Prior to exposure a difference in mean heart rate was found be-

tween active and inactive animal groups in Series I (Table II).

Advantage was taken of this source of heterogeneity by subdividing

the series, for purposes of subsequent analyses, into "initially inactive"

and "initially active" sub-series. No 3pecial selection by "reaction types"

was involved by this sub-division since control rats in the intially

active sub-series returned to sleep within minutes and were in-

distinguishable thereafter from initially inactive controls.

Fig. 1 shows the distribution of animals by series on the heart

rate measurement for the last pre-irradiation interval. Clearly evi-

dent is the effect of the presence or absence of previous training

and of restraint in establishing distinguishable states upon which

irradiation was then imposed. Among the adapted series the adrenal-

ectamized animals (Series III) displayed a chronic tachycardia, but

were otherwise indistinguishable in behavior and appearance froa

normal animals.

The Initial Reactions to X-ray Exposure.

Figure 2 sumnarizes the results for the adapted normal animals of

Series I that were asleep at the start of exposure (initially inactive

sub-series). The analysis was made by dose-rate group of the relative

incidence of "active" behavior (upper) and of the change in co-varlance
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adjusted mean heart rate (lower) for the first sampling interval of

12 seconds (0.1 min.) and the following 30 minutes. In this figure,

as in all subsequent figures, the upper limit of the 95% confidence

interval (x) for the behavioral rating and of the standard error

limits for tfie heart rate mean (vertical marker) are shown for the

control group. Both dose-rate groups showed equivaleni6 incidences

of arousal within this first interval (p < 0.02) unaccompanied by any

change in heart rate. During the middle portion of the first minute

(0.5 min.), the group exposed at the rate of 1.9 r/sec exhibited a

further increase in the incidence of arousal, but now acccopanied

by a marked acceleration in heart rate. By the end of the first

minute, this group, and also the lover dose-rate (0.25 r/sec) group,

appeared to have cumpleted the initial arousal reaction to exposure

to X-rays and were returning to their trained quiescent state.

A sham-exposure test was made on scme animals at least 30 minutes

before the exposure test to determine whether these reactions could

be attributed to stimulus artifacts associated with the start of ex-

posure. For this test the X-ray tube was turned off but all other

stimulation conditions were the same. Fig. 3 shows the results for

initially inactive animals. For the sleeping animal, procedural

operations at the start of exposure produced no apparent stimulation.

The results of the sham-exposure tests in the other series indicated,

likewise, that initial reactions to X-rays could not be attributed to

12



stimulus artifacts associated with the start of exposure.

Visual stimulation with X-rays coild have occurred since these

rats were sleeping with eyes closed and, therefore, were partially

dark adapted. However, as shown in Fig. 4, ophthalmectomized rats

(Series II) that were initially inactive and exposed at the higher

dose rate of 1.9 r/sec not only showed as rapid a response as sighted

animals, but also exhibited the more intense form of reaction, which

involved an immediate accleration in heart rate. Within the first

sampling interval the initially inactive blinded animals displayed

an average increase of 23.7 (W'M - 6.8), while initially inactive

normal animals from Series I showed an average increase of only 4.5

(3.3) beats/min. The blinded animals that were initially active

also showed the reaction with an average increase of 27.0 (3.2)

beats/Min. The analysis of variance among these mean increases

yielded F - 8.84 (p < 0.005 for 2 and 15 DF's).

As may be seen in Fig. 5 adrenalectomized animals that were ini-

tially inactive failed to show any reaction to exposure at the high

dose rate during the first sampling interval but did show evidence of

a behavioral arousal and an acceleration in heart rate by the end of

the first minute. While the reaction appears to have been delayed,

in contradistinction to the reaction of normal rats asleep (Fig. 2)

and ophthalmectomized rats (Fig. 4), the magnitude of the respose

was at least as great. Initially active adrenalectomized animals that

were exposed failed to show similar evidence of stimulation.
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No clear pattern of heart rate reactions was apparent in normal

animals that were not asleep at the start of exposure (initially

active sub-groups of Series I, Fig. 6; Series IV, Fig. 7). However,

a transitory increase in heart rate was evident during the first

minute of exposure in the active, restrained group (Series V, Fig. 8).

The Subsequent Reactions During Continued X-Ray Exposure.

Following the initial arousal reaction, the initially inactive

normal rats which were exposed at the lower dose rate (0.25 r/sec.)

for 67 minutes, returned to the control level by the end of the first

minute and showed no further evidence of wakefulness until the termina-

tion of exposure. In contrast, those exposed at the higher rate

(1.9 r/sec.) for 9 minutes continued to exhibit wakefulness throughout

the residual eight minutes of exposure (Fig. 2). For the period from

2 through 9 minutes the proportion of "active" ratings in two or more

adjacent observations was 0.17, 0.18 and 0.60 for control, low and

high dose-rate groups, respectively C2 - 8.98; p < 0.02 for DF - 2).

This behavioral reaction to continued exposure was closely paralleled

during this period by the heart rate measurements. Only in the initial

sampling interval of 12 seconds was there a failure of correlation

between the two variables. The reactions displayed during the residual

period of exposure, Just as during the first minute, were related to

the dose rate since, at comparable accumulated doses, the low dose-

rate group failed to exhibit any additional reactions after the first

12-second interval.



Comparable evidence for the occurrence of reactions during contin-

ued exposure is even more clearly displayed in the initially active

sub-series (Fig. 6). The control and low dose-.*rate exposure groups

settled to the sleep state in accordance with their previous training,

but in contrast, the high dose-rate group exhibited upward inflections

at 3 minutes (340 r) on heart rate measurements and at 4 minutes (460 r)

on behavioral measurements. Again, as with the initially inactive sub-

series, this reaction during the residual period of exposure is re-

lated to the dose-rate since the low dose-rate group failed to ex-

hibit cumparable doses beyond 25 minutes (375 r). The transient be-

havioral response which was exhibited by the low dose-rate group after

10 minutes of exposure (150 r) was unreliable statistically. Since

animals exposed at the higher dose-rate in both sub-series of Series

I showed evidence of excitatory effects of irradiation during contin-

ued exposure these reactions were largely independent of the state of

the animal at the start of exposure..

Although ophthalmectcmized animals had shown a more marked ini-

tial reaction than had normal animals, they failed to show continued

wakefulness or a heart rate response during the residual 8 minutes of

exposure (Fig0 9). The similarity between exposed and shielded blinded

animals during this period was marked in that in 7 out of 8 tests

between co-variance adjusted mean heart rates the F ratios were less

than unity. Adrenalectcnized rats (Fig. 10) also failed to show a
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continuation of the initial elevation in heart rate during exposure;

while in behavior they displayed only slight evidence for continued

wakefulness. No evidence for X-ray induced excitation was obtained

during this interval from heart rate measurements in normal rats

that were not previously conditioned to sleep (Fig. 7) or that were

actively restrained and in an excited state during exposure (Fig. 8).

Response With Termination of X-ray Exposure

Adapted normal animals exposed at the rate of 1.9 r/sec for 9

minutes continued to displayed reactions in the period immediately

following termination of exposure. This occurred in both initially

active and inactive sub-groups of Series I (Figs. 2,6). Over the

first three measurements following exposure at the higher dose rate

(10 to 20 mmin), 50% and 13% of the high and low dose-rate groups,

respectively, received two or more "active" ratings (•2 - 7.16; p <

0.01 for DF - 1). By 20 minutes after the end of exposure, the high

dose-rate animals had returned to the quiescent state concurrently

exhibited by the lower dose-rate group. Animals exposed at the lower

dose rate of 0.25 r/ser for 67 minutes also differentially exhibited

wakefulness for a short period following termination of exposure. In

a cceparable analysis of behavior over the first three measurements

following exposure at the lower dose rate (70 to 90 min), 87% and 55%

of the low and high dose-rate groups, respectively, received two or

more "active" ratings (%2 - 5.75; p < 0.02 for DF= 1) and thereafter
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the behavior of the low dose-rate group rapidly approached and became

nearly identical with that displayed by the higher doze-rate groun,

Ophthalmectomized animals exhibited a transient response follow-

ing termination of exposure on both measures (Fig. 9). The reaction

was more apparent in these animals since they showed no evidence of

excitation during the terminal minutes of exposure. AdrenalectumIzed

animals also exhibited the transient heart rate response (Fig. 10),

although less reliably. An with their initial reactions to exponure,

the response was delayed in its first appearance. Non-adapted normal

rats showed an elevation in heart rate, absent during the terminal

minutes of exposure, which appeared immediately following termination

of exposure and was still present at 30 minut'' (Fig. 7). Only in

restrained, excited animals (Fig. 8) was there a lack of response

with the termination of irradiation.

DIBCUSSION

It is evident that ionizing radiation can act in a manner quite

analogous to a stimulus in that it elicits an arousal reaction from

sleep. Observations under sham exposure conditions demonstrated that

this reaction could not be attributed to stimulus artifacts associated

with the procedure of exposure. Radiation was effectivc during the

sleep state; a condition in which the animal is considered to be

relatively insensitive to stimulation (47-49). Arousal from sleep-.

depends upon the relatively slow facilitation (amplification)
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mechanisms of the ascending portions of the extra-lemniscal (reticular)

system of Magoun (50,51). Since behavioral and heart rate measurements

reflect terminal events in slow effector systems, the neurophysiologic

events initiated by X-ray exposure must have occurred very early

within the first sampling interval of 12 seconds. The rapid appearance

of an arousal reaction following the start of exposure to X rays tends

to rule out stimulation through abscopal effects at sites remote from

nervous tissue, but is consistent with the thesis that ionizing radin-

tion can stimulate the nervous system directly.

The intensity of the initial reactions was dependent upon the

dose-rate of exposure. Exposure at the dose rate of 0.25 r/sec elicitcd

only a mild, transient arousal reaction, whereas a dose rate of 1.9

r/sec produced a reaction which was sustained longer, affected more

animalst and involved additional sub-cortical regions as reflected by

the acceleration in heart rate. The more intense form of the reaction

was not dependent upon total exposure dose, s.nce it was absent in the

low-intensity exposure group at comparable accumulated doses.

The arousal response appears to be a very sensitive reaction to

X-ray stimulation. The doses accumulated by the end of the first in-

terval of 12 seconds were 3 and 23 r, respectively, for the low and

high exposure intensities. This initial reaction to X-ray stimulation

in the rat, both in latency and in radiosensitivity, is comparable to

the most sensitive of the many reflex-like responses found to occur
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in invertebrates (29,30). Detection of stimulation in the present

study is, of course, dependent upon the concurrent state of the ani-

mal. The effects were not dependent in any simple manner upon the

state of the nervous system during sleep, since reactions were also

observed in restrained animals and in initially active ophthalmecto-

mized animals.

Although X rays act in the manner of a stimulus, its mode of

action is less certain. There is no known specific "radiation re-

ceptor", and only the visual (photo-phemical) receptor system has been

shown to be sensitive to ionizing radiation at energy levels at all

ccaparable to those for the adequate stimulus of light (18,19). Many

of the prompt behavioral responses by invertebrates to ionizing irrad-

iation are of a form normally elicited by light (29,30,32,52) and

therefore may be produced through stimulation of photo-chemical sys-

tems. In the mammal, EEG responses have been reported to occur

immediately following the start of irradiation (53), even within the

first second during gamma-ray (Co 60) exposure of rabbits at dose rates

of 2.5 r/sec or more (54). However, these measurements might reflect

the central effects of retinal stimulation since the visual system vas

intact and no tests of possible direct visual stimulation by radiation

were imposed.

The extent to which X-ray stimulation of the visual system in

normal animals may play a role in the present observations has not
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been determined. Asleep and with eyes closed, the rats in Series I

were at least partially dark adapted, so that exposure, even at the

low intensity of 0.25 r/sec, may have elicited a response to visual

stimulation. However, visual stimulation, although possibly present,

cannot account for all initial reactions, since similarly trained

animals without retinas exhibited the intense form of arousal within

the first interval of 12 seconds at the intensity of 1.9 r/sec.

The pattern of initial reactions in blinded rats furnishes a

comparison of interest with the reaction pattern in sighted animals.

Although exposed at the same intensity, the initial reaction by

blinded rats involved cardiac acceleration, which was absent in the

normal animal at the earliest test point. The initial absence of a

cardiac response in sighted rats could result if visual stimulation

exerted a transient inhibitory effect on the excitability of the

reticular system to the non-visual mode(s) of X-ray stimulation.

Such corticofugal inhibitory systems have been invoked to account both

for "gating" of sensory influx to the CNS (55-58) and selective atten-

tion (51). Specifically, Wada (59) has demonstrated inhibitory effects

of retinal stimulation at various sub-cortical sites, including the

hypothalamus. In the present study, sensory deprivation, limited to

the visual mode, could results in release from cortical inhibition and

produce thereby greater excitability through non-visual mode(s) of

stimulation.
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The non-visual mode(s) for stimulation by X rays, as demonstrated

in blind animals, can only be conjectured. However, sae non-visual

receptor systems can be reasonably eliminated as possible modes.

Tobias, et al (60), have demonstrated a standard blink reflex in the

rabbit in which the radiation by heavy ions was limited to the corneal

layer containing fibers endings. The threshold intensity for this

response system was 10,000 red in a 2 msec pulse, which is several

million times greater than that required in the present study. Re-

ceptor systems which involve spike generation in bare fibers, without

pre-synaptic receptor amplification for the generation of "receptor

potentials" (61), might be expected to show a similar level of sensi-

tivity to ionizing radiation. This could conceivably exclude from

consideration many sensory systems, including pain, touch, possibly

skin temperature (62), and, perhaps, many mechanoreceptors. Receptors

more likely to be directly stimulated by ionizing radiation would be

those chemoreceptors which involve radiosensitive biochemical systams

at the transduction or early amplification stages of receptor function.

This would occur in a manner analogous to that suggested by Lipets

(19) to be the case for the photochemical receptor processes in the

retina. Indirect evidence for non-visual, chemoreceptor sensitivity

is provided by the presence in some invertebrates, eog. the ant, of

responses to irradiation which normally are elicited by chemical

stimuli (30).
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The radiation stimulus action need not be limited to sensory

systems but could involve alterations of synaptic junctions as well.

Long ago, Toyama (63) made such a proposal in his investigations of

cardiovascular effects with irradiation of peripheral and central

ganglia. Several theories for direct nervous system effects have

been advanced recently. As an extension of an enzyme-release theory

(64), the rapid release or liberation of neurohormones, particularly

amines, was proposed by Brinknan (65) to account for prompt reactions.

These substances could conceivably stimulate the CNS secondarily

through effects on peripheral systems. This indirect process of sti-

mulation, however, would be unlikely to occur with sufficient rapidity

to produce the relatively slow reaction of arousal within 12 seconds

following the start of exposure. However, labile forms of several

amines, including serotonin, are present in the brain with the highest

concentrations found in the hypothalamus and reticular formation (66).

The adrenergic components of the reticular system are directly sensi-

tive to a number of catecholamines (67) whether originating peripheral-

ly from post-ganglionic sympathetic effector sites (68) and the adrenal

medulla (69,70), or from local release within the brain stem (68,71).

Accordingly, radiation-induced neurohormonal release from neuro-

vesicles located in synaptic regions in brain tissue could occur

imnediately and thus effect central activity. Several mechanisms for

direct alterations in cell membranes by irradiation have also been
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proposed for neural stimulation. Both the direct electrical effect on the

membrane potential by ion formation (31472) and the effect of ioniza-

tion on metabolic processes (65,7 3 ,P74), especially the *sodium-pump*,

have been suggested for high-intensity radiation effects. Hug has

proposed (31) that irradiation at low intensities may directly, and

reversibly, affect the macrumolecular layers of the membrane or,

alternatively, that neurochemical processes are effected which then

act physiologically on the cell membrane.

It is conceivable that penetrating ionizing radiation acts in

the manner of a "distributed stimulus" in that the energy transfer

with irradiation occurs nearly instantaneously throughout large

masses of nervous tissue. Its effectiveness as a distributed stimu-

lus may depend upon differential density of sensitive structures, the

functional organization, and also the momentary state of excitability

of those portions of the nervous system that are exposed. The arousal

reactions to radiation are similar to the mild reactions that accom-

pany spontaneous arousal from sleep, and that are normally associated

with relatively slight changes in the tonic, autochthonous activity

of the reticular system (68). Minute alterations induced by radiation

in each )f a great many synaptic regionsp as postulated by a volume

stimualus conceptualization, could produce similar disturbances. De-

tection of the disturbance would depend upon the reticular system

facilitating (amplifying) the consequences of the initial effect.
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Volume effects in other ganglia, both central and peripheral, might

also produce alterations in influx to the reticular system through its

manifold connections (75,76) and, thereby, produce prompt activation

of the CNS and behavioral arousal.

The action of radiation which produced the initial activation

may be expected to continue with the continuation of exposure. How-

ever, other sources of stimulation could arise and complicate the

pattern of both behavioral and heart rate responses over time. Such

sources of stimulation may include the effects of irradiation on

peripheral systems, particularly in smooth muscles (30,31), in the

gastrointestinal system (33,77), and from the diffuse release of

neurohormones (64,65) and various toxic substances from injured cells

(21,64,78,79). Immediately following a 4 to al-minute exposure (200r,

400r) of cats, Gangloff and Haley (5) showed that changes in cortical

and sub-cortical electrographic measurements occurred in correspond-

ence to alterations in behavior. More recently, Gangloff (8) reported

that the rate of hippocampal spiking was altered in the rabbit during

exposure of the head to 400r. In the present study, continued activa-

tion in adapted animals during exposure at the high dose rate very

likely reflects the effect of these additional sources of stimulation.

A short period of excitation followed the termination of ex-

posure to the lethal, 1,000 r dose in all series except that which

involved restrained animals. As displayed in the behavior of adapted
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normal animals., excitation occurred following exposure at both

dose rates. Groups in which excitatory effects were not displayed

during the last minutes of exposure exhibited this reaction as a

distinct transitory response in behavior and/or heart rate in the

i•meate post-exposure period. Although this reaction may reflect

an noff" phenomenon, possibly associated with a release from an

inhibition induced during exposure, it may also be related to the

injurious effects of the accumulated exposure dose.

SUhNARY

Whole-body exposure to 250 kvp X rays was found to have an

immediate stimulative effect on the nervous system of the adapted,

unanesthetized adult rat. Exposure at a low dose rate (0.25 r/sec)

produced a transitory arousal from sleep within the first 12 seconds

(accrued dose of 3 r). At a higher dose rate (1.9 r/sec) this ini-

tial reaction increased in scope and, by 30 seconds, included also

an acceleration in heart rate as well. Only animals exposed at

the higher dose rate exhibited evidence of excitation during the

residual period of exposure to a 1,000 r total dose. Accordingly,

the intensity of the reaction during exposure depended upon the dose

rate rather than the total dose. A transient excitatory effect at

the termination of exposure was indicated by the occurrence of be-

havioral wakefulness for a period of minutes following exposure at

both dose rates. The excitatory effects of irradiation were not
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dependent upon adrenal function since adrenalectauized animals

showed a sequence of reactions comparable to that shown by normal

animals but with longer latencies. Stinulation through radio-

sensitive mechanisms apart froa the visual receptor system was

indicated since ophthalmectouized animals exhibited both behavioral

and heart rate responses within seconds after the start of exposure.

Some possible modes for the action of ionizing radiation as a

stimulus to the nervous system are discussed.
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dose-rate groups within each series.
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(lower) in initially inactive rats (Series I). Mean heart rates were
adjusted in co-variance analysis and graphed as the difference value
from the pooled pre-irradiation mean. The upper 95% confidence inter-
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(lower) in initially active rats (Series I). Figure notations as
in Fig. 2.
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Fig. 2.
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as in Fig. 2.
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in Fig. 2.
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